TradingView
RicardoSantos
2023年5月2日午前10時46分

BenfordsLaw 

Dow Jones Industrial Average IndexTVC

詳細

Library "BenfordsLaw"
Methods to deal with Benford's law which states that a distribution of first and higher order digits
of numerical strings has a characteristic pattern.
"Benford's law is an observation about the leading digits of the numbers found in real-world data sets.
Intuitively, one might expect that the leading digits of these numbers would be uniformly distributed so that
each of the digits from 1 to 9 is equally likely to appear. In fact, it is often the case that 1 occurs more
frequently than 2, 2 more frequently than 3, and so on. This observation is a simplified version of Benford's law.
More precisely, the law gives a prediction of the frequency of leading digits using base-10 logarithms that
predicts specific frequencies which decrease as the digits increase from 1 to 9." ~(2)
---
reference:
- 1: en.wikipedia.org/wiki/Benford's_law
- 2: brilliant.org/wiki/benfords-law/
- 4: github.com/vineettanna/Benfords-Law/tree/master

cumsum_difference(a, b)
  Calculate the cumulative sum difference of two arrays of same size.
  Parameters:
    a (float[]): `array<float>` List of values.
    b (float[]): `array<float>` List of values.
  Returns: List with CumSum Difference between arrays.

fractional_int(number)
  Transform a floating number including its fractional part to integer form ex:. `1.2345 -> 12345`.
  Parameters:
    number (float): `float` The number to transform.
  Returns: Transformed number.

split_to_digits(number, reverse)
  Transforms a integer number into a list of its digits.
  Parameters:
    number (int): `int` Number to transform.
    reverse (bool): `bool` `default=true`, Reverse the order of the digits, if true, last will be first.
  Returns: Transformed number digits list.

digit_in(number, digit)
  Digit at index.
  Parameters:
    number (int): `int` Number to parse.
    digit (int): `int` `default=0`, Index of digit.
  Returns: Digit found at the index.

digits_from(data, dindex)
  Process a list of `int` values and get the list of digits.
  Parameters:
    data (int[]): `array<int>` List of numbers.
    dindex (int): `int` `default=0`, Index of digit.
  Returns: List of digits at the index.

digit_counters(digits)
  Score digits.
  Parameters:
    digits (int[]): `array<int>` List of digits.
  Returns: List of counters per digit (1-9).

digit_distribution(counters)
  Calculates the frequency distribution based on counters provided.
  Parameters:
    counters (int[]): `array<int>` List of counters, must have size(9).
  Returns: Distribution of the frequency of the digits.

digit_p(digit)
  Expected probability for digit according to Benford.
  Parameters:
    digit (int): `int` Digit number reference in range `1 -> 9`.
  Returns: Probability of digit according to Benford's law.

benfords_distribution()
  Calculated Expected distribution per digit according to Benford's Law.
  Returns: List with the expected distribution.

benfords_distribution_aprox()
  Aproximate Expected distribution per digit according to Benford's Law.
  Returns: List with the expected distribution.

test_benfords(digits, calculate_benfords)
  Tests Benford's Law on provided list of digits.
  Parameters:
    digits (int[]): `array<int>` List of digits.
    calculate_benfords (bool)
  Returns: Tuple with:
- Counters: Score of each digit.
- Sample distribution: Frequency for each digit.
- Expected distribution: Expected frequency according to Benford's.
- Cumulative Sum of difference:

to_table(digits, _text_color, _border_color, _frame_color)
  Parameters:
    digits (int[])
    _text_color (color)
    _border_color (color)
    _frame_color (color)

リリースノート

v2 minor update.

リリースノート

Fix logger version.
コメント
peacefulLizard50262
Youre an inspiration holy crap
KioseffTrading
theheirophant
very cool! wonder if you could derive the amount of market manipulation based on deviation of price from benfords?
RicardoSantos
@theheirophant, perhaps, but not on my opinion, i think benford's follows the expectancy of a power series (loglike) so non power series will naturally fall short? imo.. :)
TimShen
Great Works, thank you for this sharing., I think you can use math.round, to limit decimal places....., hmmmm.....perhaps, there's no need for such details of the numbers.
xmd1979
epic, RS..as always
allanster
Beautiful work (as always), and the table presentation looks super nice, thanks for your generosity!
詳細