Library "math" It's a library of discrete aproximations of a price or Series float it uses Fourier Discrete transform, Laplace Discrete Original and Modified transform and Euler's Theoreum for Homogenus White noice operations. Calling functions without source value it automatically take close as the default source value.
Here is a picture of Laplace and Fourier approximated close prices from this library:
DFT3(xval, _dir) Discrete Fourier Transform with last 3 points Parameters: xval (float): Source series _dir (int): Direction parameter Returns: Aproxiated source value
DFT2(xval, _dir) Discrete Fourier Transform with last 2 points Parameters: xval (float): Source series _dir (int): Direction parameter Returns: Aproxiated source value
FFT(xval) Fast Fourier Transform once. It aproximates usig last 3 points. Parameters: xval (float): Source series Returns: Aproxiated source value
DFT32(xval) Combined Discrete Fourier Transforms of DFT3 and DTF2 it aproximates last point by first aproximating last 3 ponts and than using last 2 points of the previus. Parameters: xval (float): Source series Returns: Aproxiated source value
DTF32(xval) Combined Discrete Fourier Transforms of DFT3 and DTF2 it aproximates last point by first aproximating last 3 ponts and than using last 2 points of the previus. Parameters: xval (float): Source series Returns: Aproxiated source value
LFT3(xval, _dir, a) Discrete Laplace Transform with last 3 points Parameters: xval (float): Source series _dir (int): Direction parameter a (float): laplace coeficient Returns: Aproxiated source value
LFT2(xval, _dir, a) Discrete Laplace Transform with last 2 points Parameters: xval (float): Source series _dir (int): Direction parameter a (float): laplace coeficient Returns: Aproxiated source value
LFT(xval, a) Fast Laplace Transform once. It aproximates usig last 3 points. Parameters: xval (float): Source series a (float): laplace coeficient Returns: Aproxiated source value
LFT32(xval, a) Combined Discrete Laplace Transforms of LFT3 and LTF2 it aproximates last point by first aproximating last 3 ponts and than using last 2 points of the previus. Parameters: xval (float): Source series a (float): laplace coeficient Returns: Aproxiated source value
LTF32(xval, a) Combined Discrete Laplace Transforms of LFT3 and LTF2 it aproximates last point by first aproximating last 3 ponts and than using last 2 points of the previus. Parameters: xval (float): Source series a (float): laplace coeficient Returns: Aproxiated source value
whitenoise(indic_, _devided, minEmaLength, maxEmaLength, src) Ehler's Universal Oscillator with White Noise, without extra aproximated src. It uses dinamic EMA to aproximate indicator and thus reducing noise. Parameters: indic_ (float): Input series for the indicator values to be smoothed _devided (int): Divisor for oscillator calculations minEmaLength (int): Minimum EMA length maxEmaLength (int): Maximum EMA length src (float): Source series Returns: Smoothed indicator value
whitenoise(indic_, dft1, _devided, minEmaLength, maxEmaLength, src) Ehler's Universal Oscillator with White Noise and DFT1. It uses src and sproxiated src (dft1) to clearly define white noice. It uses dinamic EMA to aproximate indicator and thus reducing noise. Parameters: indic_ (float): Input series for the indicator values to be smoothed dft1 (float): Aproximated src value for white noice calculation _devided (int): Divisor for oscillator calculations minEmaLength (int): Minimum EMA length maxEmaLength (int): Maximum EMA length src (float): Source series Returns: Smoothed indicator value
smooth(dft1, indic__, _devided, minEmaLength, maxEmaLength, src) Smoothing source value with help of indicator series and aproximated source value It uses src and sproxiated src (dft1) to clearly define white noice. It uses dinamic EMA to aproximate src and thus reducing noise. Parameters: dft1 (float): Value to be smoothed. indic__ (float): Optional input for indicator to help smooth dft1 (default is FFT) _devided (int): Divisor for smoothing calculations minEmaLength (int): Minimum EMA length maxEmaLength (int): Maximum EMA length src (float): Source series Returns: Smoothed source (src) series
smooth(indic__, _devided, minEmaLength, maxEmaLength, src) Smoothing source value with help of indicator series It uses dinamic EMA to aproximate src and thus reducing noise. Parameters: indic__ (float): Optional input for indicator to help smooth dft1 (default is FFT) _devided (int): Divisor for smoothing calculations minEmaLength (int): Minimum EMA length maxEmaLength (int): Maximum EMA length src (float): Source series Returns: Smoothed src series
vzo_ema(src, len) Volume Zone Oscillator with EMA smoothing Parameters: src (float): Source series len (simple int): Length parameter for EMA Returns: VZO value
vzo_sma(src, len) Volume Zone Oscillator with SMA smoothing Parameters: src (float): Source series len (int): Length parameter for SMA Returns: VZO value
vzo_wma(src, len) Volume Zone Oscillator with WMA smoothing Parameters: src (float): Source series len (int): Length parameter for WMA Returns: VZO value
alma2(series, windowsize, offset, sigma) Arnaud Legoux Moving Average 2 accepts sigma as series float Parameters: series (float): Input series windowsize (int): Size of the moving average window offset (float): Offset parameter sigma (float): Sigma parameter Returns: ALMA value
Wavelet(src, len, offset, sigma) Aproxiates srt using Discrete wavelet transform. Parameters: src (float): Source series len (int): Length parameter for ALMA offset (simple float) sigma (simple float) Returns: Wavelet-transformed series
Wavelet_std(src, len, offset, mag) Aproxiates srt using Discrete wavelet transform with standard deviation as a magnitude. Parameters: src (float): Source series len (int): Length parameter for ALMA offset (float): Offset parameter for ALMA mag (int): Magnitude parameter for standard deviation Returns: Wavelet-transformed series
LaplaceTransform(xval, N, a) Original Laplace Transform over N set of close prices Parameters: xval (float): series to aproximate N (int): number of close prices in calculations a (float): laplace coeficient Returns: Aproxiated source value
NLaplaceTransform(xval, N, a, repeat) Y repetirions on Original Laplace Transform over N set of close prices, each time N-k set of close prices Parameters: xval (float): series to aproximate N (int): number of close prices in calculations a (float): laplace coeficient repeat (int): number of repetitions Returns: Aproxiated source value
LaplaceTransformsum(xval, N, a, b) Sum of 2 exponent coeficient of Laplace Transform over N set of close prices Parameters: xval (float): series to aproximate N (int): number of close prices in calculations a (float): laplace coeficient b (float): second laplace coeficient Returns: Aproxiated source value
NLaplaceTransformdiff(xval, N, a, b, repeat) Difference of 2 exponent coeficient of Laplace Transform over N set of close prices Parameters: xval (float): series to aproximate N (int): number of close prices in calculations a (float): laplace coeficient b (float): second laplace coeficient repeat (int): number of repetitions Returns: Aproxiated source value
N_divLaplaceTransformdiff(xval, N, a, b, repeat) N repetitions of Difference of 2 exponent coeficient of Laplace Transform over N set of close prices, with dynamic rotation Parameters: xval (float): series to aproximate N (int): number of close prices in calculations a (float): laplace coeficient b (float): second laplace coeficient repeat (int): number of repetitions Returns: Aproxiated source value
LaplaceTransformdiff(xval, N, a, b) Difference of 2 exponent coeficient of Laplace Transform over N set of close prices Parameters: xval (float): series to aproximate N (int): number of close prices in calculations a (float): laplace coeficient b (float): second laplace coeficient Returns: Aproxiated source value
NLaplaceTransformdiffFrom2(xval, N, a, b, repeat) N repetitions of Difference of 2 exponent coeficient of Laplace Transform over N set of close prices, second element has for 1 higher exponent factor Parameters: xval (float): series to aproximate N (int): number of close prices in calculations a (float): laplace coeficient b (float): second laplace coeficient repeat (int): number of repetitions Returns: Aproxiated source value
N_divLaplaceTransformdiffFrom2(xval, N, a, b, repeat) N repetitions of Difference of 2 exponent coeficient of Laplace Transform over N set of close prices, second element has for 1 higher exponent factor, dynamic rotation Parameters: xval (float): series to aproximate N (int): number of close prices in calculations a (float): laplace coeficient b (float): second laplace coeficient repeat (int): number of repetitions Returns: Aproxiated source value
LaplaceTransformdiffFrom2(xval, N, a, b) Difference of 2 exponent coeficient of Laplace Transform over N set of close prices, second element has for 1 higher exponent factor Parameters: xval (float): series to aproximate N (int): number of close prices in calculations a (float): laplace coeficient b (float): second laplace coeficient Returns: Aproxiated source value
リリースノート
v2
Added: calculateParameters(src, n) calculateParameter: aproximates parrameters for a * e^k + b * e^l Parameters: src (float): series price Source n (int) Returns: a k b l parameters for a * e^k + b * e^l
LaplaceTransformv1(xval, N, a, b, c, d, repeat) LaplaceTransformv1: My version 1 of laplace transform with 4 parrameters Parameters: xval (float): series to aproximate N (int): number of close prices in calculations a (float): laplace coeficient b (float): second laplace coeficient c (float): laplace multyply d (float): second laplace multiply repeat (int): number of repetitions Returns: Aproxiated source value
LaplaceTransformv2(xval, N, a, b, c, d, repeat) LaplaceTransformv1: My version 1 of laplace transform with 4 parrameters Parameters: xval (float): series to aproximate N (int): number of close prices in calculations a (float): laplace coeficient b (float): second laplace coeficient c (float): laplace multyply d (float): second laplace multiply repeat (int): number of repetitions Returns: Aproxiated source value
リリースノート
added Laplace-Stieltjes transform
リリースノート
v4
Added: LaplaceTransformv3(xval, N, a, b, c, d, repeat) LaplaceTransformv3: My version 3 of laplace transform with 4 parrameters Parameters: xval (float): series to aproximate N (int): number of close prices in calculations a (float): laplace coeficient b (float): second laplace coeficient c (float): laplace multyply d (float): second laplace multiply repeat (int): number of repetitions Returns: Aproxiated source value
LaplaceStieltjesTransform(xval, N, a, b, c, d, repeat) LaplaceStieltjesTransform: Laplace Stieltjes Transform with 4 parrameters Parameters: xval (float): series to aproximate N (int): number of close prices in calculations a (float): laplace coeficient b (float): second laplace coeficient c (float): laplace multyply d (float): second laplace multiply repeat (int): number of repetitions Returns: Aproxiated source value