LazyBear

[REPOST] Indicators: 3 Different Adaptive Moving Averages

*** NOTE: This is a repost with updated scripts to workaround the recent script engine changes ****

As the volatility rises, all Adaptive Moving Averages (AMA) become more sensitive and adapt faster to the price changes. As the volatility decreases, they slow down significantly compared to normal EMA . This makes it an excellent choice for detecting ranging markets (look for horizontal lines).

I have included 3 AMAs here:
- Kaufman's AMA. This makes use of Kaufman's Efficiency Ratio as the smoothing constant.
- Adaptive RSI . This adapts standard RSI to a smoothing constant.
- Tushar Chande's Variable Index Dynamic Average ( VIDYA ). This uses a pivotal smoothing constant, which is fixed, and varies the speed by using a factor based on the relative volatility to increase or decrease the value of SC .

For reference, I have plotted an EMA (10). This uses a fixed smoothing constant.

This is my 25th indicators post (Yayy!), so decided to include a bunch of AMAs. Enjoy :)

Feel free to "Make mine" and use these in your charts. Appreciate any comments / feedback.

List of my free indicators: http://bit.ly/1LQaPK8
List of my indicators at Appstore: http://blog.tradingview.com/?p=970
オープンソーススクリプト

TradingViewの精神に則り、このスクリプトの作者は、トレーダーが理解し検証できるようにオープンソースで公開しています。作者に敬意を表します!無料で使用することができますが、このコードを投稿で再利用するには、ハウスルールに準拠する必要があります。 お気に入りに登録してチャート上でご利用頂けます。

免責事項

これらの情報および投稿は、TradingViewが提供または保証する金融、投資、取引、またはその他の種類のアドバイスや推奨を意図したものではなく、またそのようなものでもありません。詳しくは利用規約をご覧ください。

チャートでこのスクリプトを利用したいですか?
//
// @author LazyBear
//
// v2 - updated the scripts to workaround function array indexing issues in the latest TV engine. 
// v1 - initial
//
study(title = "Kaufman Adaptive Moving Average [LazyBear]", shorttitle="KAMA2_LB", overlay=true)
amaLength = input(10, title="Length")
fastend=input(0.666)
slowend=input(0.0645)

diff=abs(close[0]-close[1])
signal=abs(close-close[amaLength])
noise=sum(diff, amaLength)
efratio=noise!=0 ? signal/noise : 1

smooth=pow(efratio*(fastend-slowend)+slowend,2)
kama=nz(kama[1], close)+smooth*(close-nz(kama[1], close))
plot( kama, color=green, linewidth=3)