PINE LIBRARY

MLLossFunctions

1 836
Library "MLLossFunctions"
Methods for Loss functions.

mse(expects, predicts) Mean Squared Error (MSE) " MSE = 1/N * sum((y - y')^2) ".
  Parameters:
    expects: float array, expected values.
    predicts: float array, prediction values.
  Returns: float

binary_cross_entropy(expects, predicts) Binary Cross-Entropy Loss (log).
  Parameters:
    expects: float array, expected values.
    predicts: float array, prediction values.
  Returns: float

免責事項

この情報および投稿は、TradingViewが提供または推奨する金融、投資、トレード、その他のアドバイスや推奨を意図するものではなく、それらを構成するものでもありません。詳細は利用規約をご覧ください。