EMA Crossover with RSI Confirmation StrategyExplicación:
Parámetros de Entrada: Se definen los períodos para las EMAs y el RSI, así como los niveles de sobrecompra y sobreventa para el RSI.
Cálculo de Indicadores:
shortEMAValue y longEMAValue calculan las medias móviles exponenciales.
rsi calcula el RSI para el precio de cierre.
Condiciones de Entrada:
Entrada Larga: Cuando la EMA corta cruza por encima de la EMA larga y el RSI está en zona de sobreventa.
Entrada Corta: Cuando la EMA corta cruza por debajo de la EMA larga y el RSI está en zona de sobrecompra.
Entradas: La estrategia abre una posición larga o corta basada en las condiciones definidas.
Visualización: Se trazan las EMAs y el RSI en el gráfico para facilitar la identificación visual de las señales de entrada.
Consideraciones:
Prueba y Optimización: Es crucial probar esta estrategia con datos históricos para evaluar su rendimiento. Ajusta los parámetros de entrada para la optimización, pero ten cuidado con el sobreajuste (overfitting).
Gestión de Riesgo: Esta estrategia no incluye directamente un mecanismo de stop loss o take profit, lo cual es crucial para la gestión de riesgo. Considera añadir estos elementos.
Adaptación a Diferentes Mercados: La estrategia podría necesitar ajustes para diferentes instrumentos financieros o marcos de tiempo.
Condiciones de Salida: Puedes expandir la estrategia añadiendo condiciones para salir de las posiciones, como un cruce inverso de EMAs o niveles específicos de RSI.
Recuerda que no hay garantías en el trading y siempre hay que estar listo para adaptar y mejorar las estrategias ante las cambiantes condiciones del mercado.
インジケーターとストラテジー
Global Index Spread RSI StrategyThis strategy leverages the relative strength index (RSI) to monitor the price spread between a global benchmark index (such as AMEX) and the currently opened asset in the chart window. By calculating the spread between these two, the strategy uses RSI to identify oversold and overbought conditions to trigger buy and sell signals.
Key Components:
Global Benchmark Index: The strategy compares the current asset with a predefined global index (e.g., AMEX) to measure relative performance. The choice of a global benchmark allows the trader to analyze the current asset's movement in the context of broader market trends.
Spread Calculation:
The spread is calculated as the percentage difference between the current asset's closing price and the global benchmark index's closing price:
Spread=Current Asset Close−Global Index CloseGlobal Index Close×100
Spread=Global Index CloseCurrent Asset Close−Global Index Close×100
This metric provides a measure of how the current asset is performing relative to the global index. A positive spread indicates the asset is outperforming the benchmark, while a negative spread signals underperformance.
RSI of the Spread: The RSI is then calculated on the spread values. The RSI is a momentum oscillator that ranges from 0 to 100 and is commonly used to identify overbought or oversold conditions in asset prices. An RSI below 30 is considered oversold, indicating a potential buying opportunity, while an RSI above 70 is overbought, suggesting that the asset may be due for a pullback.
Strategy Logic:
Entry Condition: The strategy enters a long position when the RSI of the spread falls below the oversold threshold (default 30). This suggests that the asset may have been oversold relative to the global benchmark and might be due for a reversal.
Exit Condition: The strategy exits the long position when the RSI of the spread rises above the overbought threshold (default 70), indicating that the asset may have become overbought and a price correction is likely.
Visual Reference:
The RSI of the spread is plotted on the chart for visual reference, making it easier for traders to monitor the relative strength of the asset in relation to the global benchmark.
Overbought and oversold levels are also drawn as horizontal reference lines (70 and 30), along with a neutral level at 50 to show market equilibrium.
Theoretical Basis:
The strategy is built on the mean reversion principle, which suggests that asset prices tend to revert to a long-term average over time. When prices move too far from this mean—either being overbought or oversold—they are likely to correct back toward equilibrium. By using RSI to identify these extremes, the strategy aims to profit from price reversals.
Mean Reversion: According to financial theory, asset prices oscillate around a long-term average, and any extreme deviation (overbought or oversold conditions) presents opportunities for price corrections (Poterba & Summers, 1988).
Momentum Indicators (RSI): The RSI is widely used in technical analysis to measure the momentum of an asset. Its application to the spread between the asset and a global benchmark allows for a more nuanced view of relative performance and potential turning points in the asset's price trajectory.
Practical Application:
This strategy works best in markets where relative strength is a key factor in decision-making, such as in equity indices, commodities, or forex markets. By assessing the performance of the asset relative to a global benchmark and utilizing RSI to identify extremes in price movements, the strategy helps traders to make more informed decisions based on potential mean reversion points.
While the "Global Index Spread RSI Strategy" offers a method for identifying potential price reversals based on relative strength and oversold/overbought conditions, it is important to recognize that no strategy is foolproof. The strategy assumes that the historical relationship between the asset and the global benchmark will hold in the future, but financial markets are subject to a wide array of unpredictable factors that can lead to sudden changes in price behavior.
Risk of False Signals:
The strategy relies heavily on the RSI to trigger buy and sell signals. However, like any momentum-based indicator, RSI can generate false signals, particularly in highly volatile or trending markets. In such conditions, the strategy may enter positions too early or exit too late, leading to potential losses.
Market Context:
The strategy may not account for macroeconomic events, news, or other market forces that could cause sudden shifts in asset prices. External factors, such as geopolitical developments, monetary policy changes, or financial crises, can cause a divergence between the asset and the global benchmark, leading to incorrect conclusions from the strategy.
Overfitting Risk:
As with any strategy that uses historical data to make decisions, there is a risk of overfitting the model to past performance. This could result in a strategy that works well on historical data but performs poorly in live trading conditions due to changes in market dynamics.
Execution Risks:
The strategy does not account for slippage, transaction costs, or liquidity issues, which can impact the execution of trades in real-market conditions. In fast-moving markets, prices may move significantly between order placement and execution, leading to worse-than-expected entry or exit prices.
No Guarantee of Profit:
Past performance is not necessarily indicative of future results. The strategy should be used with caution, and risk management techniques (such as stop losses and position sizing) should always be implemented to protect against significant losses.
Traders should thoroughly test and adapt the strategy in a simulated environment before applying it to live trades, and consider seeking professional advice to ensure that their trading activities align with their risk tolerance and financial goals.
References:
Poterba, J. M., & Summers, L. H. (1988). Mean Reversion in Stock Prices: Evidence and Implications. Journal of Financial Economics, 22(1), 27-59.
Gupta TradersThis is completely failed strategy,
Trades taken in opposite direction is more worth it than in forward direction.
Buy When There's Blood in the Streets StrategyStatistical Analysis of Drawdowns in Stock Markets
Drawdowns, defined as the decline from a peak to a trough in asset prices, are an essential measure of risk and market dynamics. Their statistical properties provide insights into market behavior during extreme stress periods.
Distribution of Drawdowns: Research suggests that drawdowns follow a power-law distribution, implying that large drawdowns, while rare, are more frequent than expected under normal distributions (Sornette et al., 2003).
Impacts of Extreme Drawdowns: During significant drawdowns (e.g., financial crises), the average recovery time is significantly longer, highlighting market inefficiencies and behavioral biases. For example, the 2008 financial crisis led to a 57% drawdown in the S&P 500, requiring years to recover (Cont, 2001).
Using Standard Deviations: Drawdowns exceeding two or three standard deviations from their historical mean are often indicative of market overreaction or capitulation, creating contrarian investment opportunities (Taleb, 2007).
Behavioral Finance Perspective: Investors often exhibit panic-selling during drawdowns, leading to oversold conditions that can be exploited using statistical thresholds like standard deviations (Kahneman, 2011).
Practical Implications: Studies on mean reversion show that extreme drawdowns are frequently followed by periods of recovery, especially in equity markets. This underpins strategies that "buy the dip" under specific, statistically derived conditions (Jegadeesh & Titman, 1993).
References:
Sornette, D., & Johansen, A. (2003). Stock market crashes and endogenous dynamics.
Cont, R. (2001). Empirical properties of asset returns: stylized facts and statistical issues. Quantitative Finance.
Taleb, N. N. (2007). The Black Swan: The Impact of the Highly Improbable.
Kahneman, D. (2011). Thinking, Fast and Slow.
Jegadeesh, N., & Titman, S. (1993). Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency.
Advanced RSI and EMA StrategyExplicación:
Indicadores Utilizados:
EMA: Para detectar cambios en la tendencia a corto y largo plazo.
RSI: Para identificar condiciones de sobrecompra y sobreventa.
ATR: Para determinar el nivel de volatilidad y ajustar el stop loss y take profit dinámicamente.
Entradas:
Largo: Cuando la EMA corta cruza sobre la EMA larga y el RSI está en zona de sobreventa.
Corto: Cuando la EMA corta cruza bajo la EMA larga y el RSI está en zona de sobrecompra.
Gestión de Riesgo:
Stop Loss: Calculado usando el ATR y un factor de riesgo para adaptarse a la volatilidad del mercado.
Take Profit: También basado en el ATR, pero con un múltiplo mayor para apuntar a mayores ganancias relativas al riesgo asumido.
Esta estrategia intenta capturar momentos de reversión en el mercado, utilizando tanto indicadores de tendencia (EMAs) como de momentum (RSI), combinados con reglas de gestión de riesgo para proteger el capital. Sin embargo, recuerda que:
El trading conlleva riesgos, y esta estrategia debería ser probada exhaustivamente con datos históricos y, preferiblemente, en un entorno simulado antes de su uso con capital real.
La personalización de los parámetros de entrada, como los periodos de los indicadores o el factor de riesgo, puede ser crucial para adaptar la estrategia a diferentes condiciones de mercado o activos.
Trend Following Strategy with KNN
### 1. Strategy Features
This strategy combines the K-Nearest Neighbors (KNN) algorithm with a trend-following strategy to predict future price movements by analyzing historical price data. Here are the main features of the strategy:
1. **Dynamic Parameter Adjustment**: Uses the KNN algorithm to dynamically adjust parameters of the trend-following strategy, such as moving average length and channel length, to adapt to market changes.
2. **Trend Following**: Captures market trends using moving averages and price channels to generate buy and sell signals.
3. **Multi-Factor Analysis**: Combines the KNN algorithm with moving averages to comprehensively analyze the impact of multiple factors, improving the accuracy of trading signals.
4. **High Adaptability**: Automatically adjusts parameters using the KNN algorithm, allowing the strategy to adapt to different market environments and asset types.
### 2. Simple Introduction to the KNN Algorithm
The K-Nearest Neighbors (KNN) algorithm is a simple and intuitive machine learning algorithm primarily used for classification and regression problems. Here are the basic concepts of the KNN algorithm:
1. **Non-Parametric Model**: KNN is a non-parametric algorithm, meaning it does not make any assumptions about the data distribution. Instead, it directly uses training data for predictions.
2. **Instance-Based Learning**: KNN is an instance-based learning method that uses training data directly for predictions, rather than generating a model through a training process.
3. **Distance Metrics**: The core of the KNN algorithm is calculating the distance between data points. Common distance metrics include Euclidean distance, Manhattan distance, and Minkowski distance.
4. **Neighbor Selection**: For each test data point, the KNN algorithm finds the K nearest neighbors in the training dataset.
5. **Classification and Regression**: In classification problems, KNN determines the class of a test data point through a voting mechanism. In regression problems, KNN predicts the value of a test data point by calculating the average of the K nearest neighbors.
### 3. Applications of the KNN Algorithm in Quantitative Trading Strategies
The KNN algorithm can be applied to various quantitative trading strategies. Here are some common use cases:
1. **Trend-Following Strategies**: KNN can be used to identify market trends, helping traders capture the beginning and end of trends.
2. **Mean Reversion Strategies**: In mean reversion strategies, KNN can be used to identify price deviations from the mean.
3. **Arbitrage Strategies**: In arbitrage strategies, KNN can be used to identify price discrepancies between different markets or assets.
4. **High-Frequency Trading Strategies**: In high-frequency trading strategies, KNN can be used to quickly identify market anomalies, such as price spikes or volume anomalies.
5. **Event-Driven Strategies**: In event-driven strategies, KNN can be used to identify the impact of market events.
6. **Multi-Factor Strategies**: In multi-factor strategies, KNN can be used to comprehensively analyze the impact of multiple factors.
### 4. Final Considerations
1. **Computational Efficiency**: The KNN algorithm may face computational efficiency issues with large datasets, especially in real-time trading. Optimize the code to reduce access to historical data and improve computational efficiency.
2. **Parameter Selection**: The choice of K value significantly affects the performance of the KNN algorithm. Use cross-validation or other methods to select the optimal K value.
3. **Data Standardization**: KNN is sensitive to data standardization and feature selection. Standardize the data to ensure equal weighting of different features.
4. **Noisy Data**: KNN is sensitive to noisy data, which can lead to overfitting. Preprocess the data to remove noise.
5. **Market Environment**: The effectiveness of the KNN algorithm may be influenced by market conditions. Combine it with other technical indicators and fundamental analysis to enhance the robustness of the strategy.
LALALALALALLalala lala la l ao a"Lalala lala la l ao a"Lalala lala la l ao a"Lalala lala la l ao a"Lalala lala la l ao a"Lalala lala la l ao a"Lalala lala la l ao a"Lalala lala la l ao a"
NQ Strategy Optimized with Explicit Position Closuresema strategy with ichimoku cloud indicator. it uses the 9, 21, and 50 ema and the ichimoku to enter longs or shorts according to the ema crosses. its decently profitable, just a test
5 Trading Strategies Combined5 strategy combining important indicators to determine buy and sell orders as well as identify candles on the chart.
RSI Divergence Strategy (revised edtition)WARNING: This is the second version (revised edition) of the RSI Divergence Strategy that I have published. It is worth noting that this version is much more accurate than the previous one.
The RSI Divergence Strategy sends signals to open long/short positions and to close long/short positions according to the bullish/bearish divergence between the RSI and the close (i.e. price of the asset)
It has an input that allows you to stipulate your stoploss, it is useful in the case of automating trading operations.
RSI con Bandas de BollingerExplicación:
Parámetros de Entrada: Los usuarios pueden ajustar la longitud del RSI, los niveles de sobrecompra/sobreventa, y la longitud y el multiplicador de desviación estándar para las Bandas de Bollinger.
Cálculo del RSI: Se calcula el RSI con la longitud especificada para identificar condiciones de mercado de sobrecompra o sobreventa.
Cálculo de las Bandas de Bollinger: Se calculan las bandas usando la longitud y el multiplicador de desviación estándar especificados, proporcionando un indicador de la volatilidad del mercado.
Condiciones de Trading:
Compra: Se genera una señal de compra cuando el RSI está por debajo del nivel de sobreventa y el precio está en o por debajo de la banda inferior de Bollinger, indicando una posible reversión hacia una tendencia alcista.
Venta/Cierre de Posición Larga: Se cierra la posición cuando el RSI está por encima del nivel de sobrecompra y el precio está en o por encima de la banda superior de Bollinger, sugiriendo una posible reversión o fin de la tendencia alcista.
EMA y MACD StrategyExplicación:
Parámetros de Entrada: Permiten a los usuarios personalizar la longitud de la EMA rápida y lenta, y los parámetros del MACD.
Cálculos: Se calculan la EMA rápida y lenta, y las líneas del MACD y su señal.
Condiciones de Trading:
LongCondition: Se abre una posición larga cuando la EMA rápida cruza por encima de la EMA lenta y la línea del MACD cruza por encima de la línea de señal.
ShortCondition: Aquí, se cierra la posición larga cuando la EMA rápida cruza por debajo de la EMA lenta y la línea del MACD cruza por debajo de la línea de señal. En este ejemplo, no se abre una posición corta automáticamente.
Entradas y Salidas: Basadas en las condiciones de trading definidas.
Visualización: Las EMAs y las líneas del MACD se trazan en el gráfico para facilitar el seguimiento visual.
Notas:
Gestión de Riesgo: No se ha incluido gestión de riesgo como stop loss o take profit, lo cual es crucial para una estrategia de trading efectiva.
Backtesting: Antes de usar esta estrategia en vivo, asegúrate de hacer un backtest exhaustivo para entender su rendimiento histórico.
Adaptación: Los mercados pueden cambiar, por lo que es importante revisar y ajustar la estrategia según sea necesario.
Demo GPT - Bollinger Bands StrategyBuy Condition: A long position is entered when the close > upper (close price is above the upper Bollinger Band).
Sell Condition: The position is closed when the close < lower (close price falls below the lower Bollinger Band).
Bollinger Bands Short Strategy//@version=5
strategy("Bollinger Bands Short Strategy", overlay=true)
// Bollinger Bands inställningar
length = input.int(20, minval=1, title="BB Length")
maType = input.string("SMA", "Basis MA Type", options= )
src = input(close, title="Source")
mult = input.float(2.0, minval=0.001, maxval=50, title="StdDev")
// Funktion för att beräkna rörligt medelvärde
ma(source, length, _type) =>
switch _type
"SMA" => ta.sma(source, length)
"EMA" => ta.ema(source, length)
"SMMA (RMA)" => ta.rma(source, length)
"WMA" => ta.wma(source, length)
"VWMA" => ta.vwma(source, length)
// Bollinger Bands beräkning
basis = ma(src, length, maType)
dev = mult * ta.stdev(src, length)
upper = basis + dev
lower = basis - dev
// Variabel för att spåra kort position-status
var bool inShortPosition = false
// Kort- och stängningssignaler
shortSignal = (not inShortPosition) and (close >= upper)
closeShortSignal = inShortPosition and (close <= lower)
// Utför handel
if shortSignal
strategy.entry("Short", strategy.short)
inShortPosition := true
if closeShortSignal
strategy.close("Short")
inShortPosition := false
// Visualisera Bollinger Bands
plot(basis, "Basis", color=#2962FF)
plot(upper, "Upper", color=#F23645)
plot(lower, "Lower", color=#089981)
Fisher Squeeze Maho by index_yunusThe strategy is built around the philosophy of aligning trades with momentum and market trends while managing risk dynamically. It combines Fisher Transform, which identifies directional momentum shifts, with the TDI Squeeze, which captures periods of volatility contraction followed by potential breakout opportunities. The inclusion of a trend filter (e.g., 200 SMA) ensures trades are executed in the direction of the dominant market trend, avoiding counterproductive entries in sideways or adverse conditions. Risk management is central to the approach, utilizing ATR-based stop-loss, take-profit, and trailing stop levels to adapt dynamically to changing market volatility. This balance between trend alignment, momentum confirmation, and adaptive risk management aims to maximize profitable opportunities while minimizing drawdowns.
Swing 200 EMA StrategySwing 200 EMA Strategy
A systematic approach to catching trend reversals using the 200 EMA as a dynamic support/resistance level.
Strategy Rules:
LONG SETUP:
• Previous 5 candles must close above 200 EMA
• Entry candle must dip below 200 EMA but close above it
• Entry candle must close above previous candle's high
• Stop Loss: Entry candle's low
• Profit Ratio is user Defined 2:1 works Best
SHORT SETUP:
• Previous 5 candles must close below 200 EMA
• Entry candle must spike above 200 EMA but close below it
• Entry candle must close below previous candle's low
• Stop Loss: Entry candle's high
• Profit Ratio is user Defined 2:1 works Best
Advanced Trading with Candlestick Patterns & Price PredictionAn advanced strategy combining important indicators to determine buy and sell orders as well as identify candles on the chart.
XAU/USD High-Probability StrategyThis strategy is designed for trading XAU/USD with a focus on high-probability setups using a combination of trend-following and momentum indicators. It employs EMA crossovers to identify market trends and RSI to filter for oversold and overbought conditions, ensuring precise entry points. Dynamic risk management is integrated with ATR-based stop-loss and take-profit levels, adapting to market volatility. With a risk-to-reward ratio of 1:3, the strategy aims to maximize profits while minimizing losses, making it suitable for intraday or swing trading in the volatile gold market.
Cycle-Based Trading Strategy//@version=5
strategy("Cycle-Based Trading Strategy", overlay=true)
// Input Parameters
cycle_length = input.int(50, title="Cycle Length", minval=1)
rsi_length = input.int(14, title="RSI Length")
rsi_buy_threshold = input.int(30, title="RSI Buy Threshold")
rsi_sell_threshold = input.int(70, title="RSI Sell Threshold")
ma_length = input.int(50, title="Moving Average Length")
// Calculate Predicted Cycles and Indicators
cycle = ta.sma(close, cycle_length)
rsi = ta.rsi(close, rsi_length)
moving_avg = ta.sma(close, ma_length)
// Generate Buy/Sell Signals
buy_signal = ta.crossover(close, cycle) and rsi < rsi_buy_threshold
sell_signal = ta.crossunder(close, cycle) and rsi > rsi_sell_threshold
// Plot Cycle and Indicators
plot(cycle, color=color.blue, title="Cycle")
plot(moving_avg, color=color.orange, title="Moving Average")
plotshape(series=buy_signal, style=shape.labelup, color=color.green, title="Buy Signal", location=location.belowbar, text="BUY")
plotshape(series=sell_signal, style=shape.labeldown, color=color.red, title="Sell Signal", location=location.abovebar, text="SELL")
// Strategy Execution
if (buy_signal)
strategy.entry("Buy", strategy.long)
if (sell_signal)
strategy.close("Buy")
THE STRATEGIE//@version=5
strategy("XAU/USD Advanced Strategy with BOS & Patterns", overlay=true)
// === Paramètres utilisateur ===
rsi_length = input.int(14, title="RSI Length")
ema_length = input.int(50, title="EMA Length")
pivot_length = input.int(5, title="Pivot Length for BOS")
use_patterns = input.bool(true, title="Use Chart Patterns?")
// === Calculs de base ===
rsi = ta.rsi(close, rsi_length)
ema = ta.ema(close, ema_length)
// === Détection des tendances ===
trend_up = close > ema
trend_down = close < ema
// === Détection des divergences RSI ===
divergence_bullish = ta.lowest(low, 2) < ta.lowest(low , 2) and ta.rising(rsi, 2)
divergence_bearish = ta.highest(high, 2) > ta.highest(high , 2) and ta.falling(rsi, 2)
// === Détection des Break of Structure (BOS) ===
hh = ta.pivothigh(high, pivot_length, pivot_length)
ll = ta.pivotlow(low, pivot_length, pivot_length)
bos_bullish = close > hh and trend_up
bos_bearish = close < ll and trend_down
// === Détection des figures chartistes ===
triangle_pattern = use_patterns and (high > high and low < low)
double_top = use_patterns and (high == high and high > high )
double_bottom = use_patterns and (low == low and low < low )
// === Conditions pour signaux ===
long_condition = (divergence_bullish or bos_bullish or double_bottom) and trend_up
short_condition = (divergence_bearish or bos_bearish or double_top) and trend_down
// === Entrées et alertes ===
if long_condition
strategy.entry("Long", strategy.long)
alert("Signal d'achat détecté : Tendance haussière avec confirmation", alert.freq_once_per_bar_close)
if short_condition
strategy.entry("Short", strategy.short)
alert("Signal de vente détecté : Tendance baissière avec confirmation", alert.freq_once_per_bar_close)
// === Affichage des indicateurs ===
plot(ema, title="EMA", color=color.yellow, linewidth=2)
plot(rsi, title="RSI", color=color.blue, linewidth=2)
// === Affichage des zones RSI ===
hline(70, "RSI Overbought", color=color.red, linestyle=hline.style_dotted)
hline(30, "RSI Oversold", color=color.green, linestyle=hline.style_dotted)
// === Affichage des Break of Structure ===
plotshape(bos_bullish, style=shape.triangleup, location=location.belowbar, color=color.green, size=size.small, title="BOS Bullish")
plotshape(bos_bearish, style=shape.triangledown, location=location.abovebar, color=color.red, size=size.small, title="BOS Bearish")
// === Affichage des Figures Chartistes ===
bgcolor(triangle_pattern ? color.new(color.orange, 80) : na, title="Triangle Pattern")
bgcolor(double_top ? color.new(color.red, 80) : na, title="Double Top Pattern")
bgcolor(double_bottom ? color.new(color.green, 80) : na, title="Double Bottom Pattern")
Adaptive Squeeze Momentum StrategyThe Adaptive Squeeze Momentum Strategy is a versatile trading algorithm designed to capitalize on periods of low volatility that often precede significant price movements. By integrating multiple technical indicators and customizable settings, this strategy aims to identify optimal entry and exit points for both long and short positions.
Key Features:
Long/Short Trade Control:
Toggle Options: Easily enable or disable long and short trades according to your trading preferences or market conditions.
Flexible Application: Adapt the strategy for bullish, bearish, or neutral market outlooks.
Squeeze Detection Mechanism:
Bollinger Bands and Keltner Channels: Utilizes the convergence of Bollinger Bands inside Keltner Channels to detect "squeeze" conditions, indicating a potential breakout.
Dynamic Squeeze Length: Calculates the average squeeze duration to adapt to changing market volatility.
Momentum Analysis:
Linear Regression: Applies linear regression to price changes over a specified momentum length to gauge the strength and direction of momentum.
Dynamic Thresholds: Sets momentum thresholds based on standard deviations, allowing for adaptive sensitivity to market movements.
Momentum Multiplier: Adjustable setting to fine-tune the aggressiveness of momentum detection.
Trend Filtering:
Exponential Moving Average (EMA): Implements a trend filter using an EMA to align trades with the prevailing market direction.
Customizable Length: Adjust the EMA length to suit different trading timeframes and assets.
Relative Strength Index (RSI) Filtering:
Overbought/Oversold Signals: Incorporates RSI to avoid entering trades during overextended market conditions.
Adjustable Levels: Set your own RSI oversold and overbought thresholds for personalized signal generation.
Advanced Risk Management:
ATR-Based Stop Loss and Take Profit:
Adaptive Levels: Uses the Average True Range (ATR) to set stop loss and take profit points that adjust to market volatility.
Custom Multipliers: Modify ATR multipliers for both stop loss and take profit to control risk and reward ratios.
Minimum Volatility Filter: Ensures trades are only taken when market volatility exceeds a user-defined minimum, avoiding periods of low activity.
Time-Based Exit:
Holding Period Multiplier: Defines a maximum holding period based on the momentum length to reduce exposure to adverse movements.
Automatic Position Closure: Closes positions after the specified holding period is reached.
Session Filtering:
Trading Session Control: Limits trading to predefined market hours, helping to avoid illiquid periods.
Custom Session Times: Set your preferred trading session to match market openings, closings, or specific timeframes.
Visualization Tools:
Indicator Plots: Displays Bollinger Bands, Keltner Channels, and trend EMA on the chart for visual analysis.
Squeeze Signals: Marks squeeze conditions on the chart, providing clear visual cues for potential trade setups.
Customization Options:
Indicator Parameters: Fine-tune lengths and multipliers for Bollinger Bands, Keltner Channels, momentum calculation, and ATR.
Entry Filters: Choose to use trend and RSI filters to refine trade entries based on your strategy.
Risk Management Settings: Adjust stop loss, take profit, and holding periods to match your risk tolerance.
Trade Direction Control: Enable or disable long and short trades independently to align with your market strategy or compliance requirements.
Time Settings: Modify the trading session times and enable or disable the time filter as needed.
Use Cases:
Trend Traders: Benefit from aligning entries with the broader market trend while capturing breakout movements.
Swing Traders: Exploit periods of low volatility leading to significant price swings.
Risk-Averse Traders: Utilize advanced risk management features to protect capital and manage exposure.
Disclaimer:
This strategy is a tool to assist in trading decisions and should be used in conjunction with other analyses and risk management practices. Past performance is not indicative of future results. Always test the strategy thoroughly and adjust settings to suit your specific trading style and market conditions.