OPEN-SOURCE SCRIPT
Yang-Zhang Volatility (YZVol) by CoryP1990 – Quant Toolkit

The Yang-Zhang Volatility (YZVol) estimator measures realized volatility using both overnight gaps and intraday moves. It combines three components: overnight returns, open-to-close returns, and the Rogers–Satchell term, weighted by Zhang’s k to reduce bias.
How to read it
Line color: Green when YZVol is rising (volatility expansion), Red when falling (volatility compression).
Background: Green tint = above High-vol threshold (active regime). Red tint = below Low-vol threshold (quiet regime).
Units: Displays Daily % by default on any timeframe (values are normalized to daily). An optional toggle shows Annualized % (√252 × Daily %).
Typical uses
Spot transitions between quiet and active regimes.
Compare realized vol vs implied vol or a risk-target.
Adapt position sizing to volatility clustering.
Defaults
Length = 20
High-vol threshold = 5% (Daily)
Low-vol threshold = 1% (Daily)
Optional: Annualized % display
Example — SPY (1D)
During the 2020 crash, YZVol surged to 5.8 % per day, capturing the height of pandemic-era volatility before compressing into a calm regime through 2021. Volatility re-expanded in 2022 due to reinflamed COVID fears and gradually stabilized through 2023. A sharp, liquidity-driven volatility event in August 2024 caused another brief YZVol surge, reflecting the historic one-day VIX spike triggered by market-wide risk-off flows and thin pre-market liquidity. A second, policy-driven expansion followed in April–May 2025, coinciding with the renewed U.S.–China tariff conflict and a sharp equity pullback. Since mid-2025, YZVol has settled near 1 % per day, with the red background confirming that realized volatility has once again compressed into a quiet, low-risk regime.
Part of the Quant Toolkit — transparent, open-source indicators for modern quantitative analysis. Built by CoryP1990.
How to read it
Line color: Green when YZVol is rising (volatility expansion), Red when falling (volatility compression).
Background: Green tint = above High-vol threshold (active regime). Red tint = below Low-vol threshold (quiet regime).
Units: Displays Daily % by default on any timeframe (values are normalized to daily). An optional toggle shows Annualized % (√252 × Daily %).
Typical uses
Spot transitions between quiet and active regimes.
Compare realized vol vs implied vol or a risk-target.
Adapt position sizing to volatility clustering.
Defaults
Length = 20
High-vol threshold = 5% (Daily)
Low-vol threshold = 1% (Daily)
Optional: Annualized % display
Example — SPY (1D)
During the 2020 crash, YZVol surged to 5.8 % per day, capturing the height of pandemic-era volatility before compressing into a calm regime through 2021. Volatility re-expanded in 2022 due to reinflamed COVID fears and gradually stabilized through 2023. A sharp, liquidity-driven volatility event in August 2024 caused another brief YZVol surge, reflecting the historic one-day VIX spike triggered by market-wide risk-off flows and thin pre-market liquidity. A second, policy-driven expansion followed in April–May 2025, coinciding with the renewed U.S.–China tariff conflict and a sharp equity pullback. Since mid-2025, YZVol has settled near 1 % per day, with the red background confirming that realized volatility has once again compressed into a quiet, low-risk regime.
Part of the Quant Toolkit — transparent, open-source indicators for modern quantitative analysis. Built by CoryP1990.
オープンソーススクリプト
TradingViewの精神に則り、この作者はスクリプトのソースコードを公開しているので、その内容を理解し検証することができます。作者に感謝です!無料でお使いいただけますが、このコードを投稿に再利用する際にはハウスルールに従うものとします。
Quant finance researcher focused on options, volatility modeling, and derivative pricing. Building tools that turn complex market behavior into clear, data-driven insights. Explore analytics and modeling at OptionsAnalysisSuite.com
免責事項
これらの情報および投稿は、TradingViewが提供または保証する金融、投資、取引、またはその他の種類のアドバイスや推奨を意図したものではなく、またそのようなものでもありません。詳しくは利用規約をご覧ください。
オープンソーススクリプト
TradingViewの精神に則り、この作者はスクリプトのソースコードを公開しているので、その内容を理解し検証することができます。作者に感謝です!無料でお使いいただけますが、このコードを投稿に再利用する際にはハウスルールに従うものとします。
Quant finance researcher focused on options, volatility modeling, and derivative pricing. Building tools that turn complex market behavior into clear, data-driven insights. Explore analytics and modeling at OptionsAnalysisSuite.com
免責事項
これらの情報および投稿は、TradingViewが提供または保証する金融、投資、取引、またはその他の種類のアドバイスや推奨を意図したものではなく、またそのようなものでもありません。詳しくは利用規約をご覧ください。