calculateKellyRatio(returns) Parameters: returns (array<float>): An array of floats representing the returns from bets. Returns: The calculated Kelly Ratio, which indicates the optimal bet size based on winning and losing probabilities.
calculateAdjustedKellyFraction(kellyRatio, riskTolerance, fedStance) Parameters: kellyRatio (float): The calculated Kelly Ratio. riskTolerance (float): A float representing the risk tolerance level. fedStance (string): A string indicating the Federal Reserve's stance ("dovish", "hawkish", or neutral). Returns: The adjusted Kelly Fraction, constrained within the bounds of [-1, 1].
calculateStdDev(returns) Parameters: returns (array<float>): An array of floats representing the returns. Returns: The standard deviation of the returns, or 0 if insufficient data.
calculateMaxDrawdown(returns) Parameters: returns (array<float>): An array of floats representing the returns. Returns: The maximum drawdown as a percentage.
calculateEV(avgWinReturn, winProb, avgLossReturn) Parameters: avgWinReturn (float): The average return from winning bets. winProb (float): The probability of winning a bet. avgLossReturn (float): The average return from losing bets. Returns: The calculated Expected Value of the bet.
calculateTailRatio(returns) Parameters: returns (array<float>): An array of floats representing the returns. Returns: The Tail Ratio, or na if the 5th percentile is zero to avoid division by zero.
calculateSharpeRatio(avgReturn, riskFreeRate, stdDev) Parameters: avgReturn (float): The average return of the investment. riskFreeRate (float): The risk-free rate of return. stdDev (float): The standard deviation of the investment's returns. Returns: The calculated Sharpe Ratio, or na if standard deviation is zero.
calculateDownsideDeviation(returns) Parameters: returns (array<float>): An array of floats representing the returns. Returns: The standard deviation of the downside returns, or 0 if no downside returns exist.
calculateSortinoRatio(avgReturn, downsideDeviation) Parameters: avgReturn (float): The average return of the investment. downsideDeviation (float): The standard deviation of the downside returns. Returns: The calculated Sortino Ratio, or na if downside deviation is zero.
calculateVaR(returns, confidenceLevel) Parameters: returns (array<float>): An array of floats representing the returns. confidenceLevel (float): A float representing the confidence level (e.g., 0.95 for 95% confidence). Returns: The Value at Risk at the specified confidence level.
calculateCVaR(returns, varValue) Parameters: returns (array<float>): An array of floats representing the returns. varValue (float): The Value at Risk threshold. Returns: The average Conditional Value at Risk, or na if no returns are below the threshold.
calculateExpectedPriceRange(currentPrice, ev, stdDev, confidenceLevel) Parameters: currentPrice (float): The current price of the asset. ev (float): The expected value (in percentage terms). stdDev (float): The standard deviation (in percentage terms). confidenceLevel (float): The confidence level for the price range (e.g., 1.96 for 95% confidence). Returns: A tuple containing the minimum and maximum expected prices.
calculateRollingStdDev(returns, window) Parameters: returns (array<float>): An array of floats representing the returns. window (int): An integer representing the rolling window size. Returns: An array of floats representing the rolling standard deviation of returns.
calculateRollingVariance(returns, window) Parameters: returns (array<float>): An array of floats representing the returns. window (int): An integer representing the rolling window size. Returns: An array of floats representing the rolling variance of returns.
calculateRollingMean(returns, window) Parameters: returns (array<float>): An array of floats representing the returns. window (int): An integer representing the rolling window size. Returns: An array of floats representing the rolling mean of returns.
calculateRollingCoefficientOfVariation(returns, window) Parameters: returns (array<float>): An array of floats representing the returns. window (int): An integer representing the rolling window size. Returns: An array of floats representing the rolling coefficient of variation of returns.
calculateRollingSumOfPercentReturns(returns, window) Parameters: returns (array<float>): An array of floats representing the returns. window (int): An integer representing the rolling window size. Returns: An array of floats representing the rolling sum of percent returns.
calculateRollingCumulativeProduct(returns, window) Parameters: returns (array<float>): An array of floats representing the returns. window (int): An integer representing the rolling window size. Returns: An array of floats representing the rolling cumulative product of returns.
calculateRollingCorrelation(priceReturns, volumeReturns, window) Parameters: priceReturns (array<float>): An array of floats representing the price returns. volumeReturns (array<float>): An array of floats representing the volume returns. window (int): An integer representing the rolling window size. Returns: An array of floats representing the rolling correlation.
calculateRollingPercentile(returns, window, percentile) Parameters: returns (array<float>): An array of floats representing the returns. window (int): An integer representing the rolling window size. percentile (int): An integer representing the desired percentile (0-100). Returns: An array of floats representing the rolling percentile of returns.
calculateRollingMaxMinPercentReturns(returns, window) Parameters: returns (array<float>): An array of floats representing the returns. window (int): An integer representing the rolling window size. Returns: A tuple containing two arrays: rolling max and rolling min percent returns.
calculateRollingPriceToVolumeRatio(price, volData, window) Parameters: price (array<float>): An array of floats representing the price data. volData (array<float>): An array of floats representing the volume data. window (int): An integer representing the rolling window size. Returns: An array of floats representing the rolling price-to-volume ratio.
determineMarketRegime(priceChanges) Parameters: priceChanges (array<float>): An array of floats representing the price changes. Returns: A string indicating the market regime ("Bull", "Bear", or "Neutral").
determineVolatilityRegime(price, window) Parameters: price (array<float>): An array of floats representing the price data. window (int): An integer representing the rolling window size. Returns: An array of floats representing the calculated volatility.
classifyVolatilityRegime(volatility) Parameters: volatility (array<float>): An array of floats representing the calculated volatility. Returns: A string indicating the volatility regime ("Low" or "High").
method percentPositive(thisArray) Returns the percentage of positive non-na values in this array. This method calculates the percentage of positive values in the provided array, ignoring NA values. Namespace types: array<float> Parameters: thisArray (array<float>)
_candleRange()
_PreviousCandleRange(barsback) Parameters: barsback (int): An integer representing how far back you want to get a range
_SmallBody(length) Parameters: length (simple int): Length of the slow EMA Returns: a series of bools, after checking if the candle body was less than body average.
_LongBody(length) Parameters: length (simple int)
bearWick() bearWick() function. Returns: a SERIES of FLOATS, checks if it's a blackBody(open > close), if it is, than check the difference between the high and open, else checks the difference between high and close.