NAND Perceptron

auroagwei アップデート済   
Experimental NAND Perceptron based upon Python template that aims to predict NAND Gate Outputs. A Perceptron is one of the foundational building blocks of nearly all advanced Neural Network layers and models for Algo trading and Machine Learning.

The goal behind this script was threefold:
  • To prove and demonstrate that an ACTUAL working neural net can be implemented in Pine, even if incomplete.
  • To pave the way for other traders and coders to iterate on this script and push the boundaries of Tradingview strategies and indicators.
  • To see if a self-contained neural network component for parameter optimization within Pinescript was hypothetically possible.

NOTE: This is a highly experimental proof of concept - this is NOT a ready-made template to include or integrate into existing strategies and indicators, yet (emphasis YET - neural networks have a lot of potential utility and potential when utilized and implemented properly).

Hardcoded NAND Gate outputs with Bias column (X0):
// NAND Gate + X0 Bias and Y-true
// X0 // X1 // X2 // Y
// 1 // 0 // 0 // 1
// 1 // 0 // 1 // 1
// 1 // 1 // 0 // 1
// 1 // 1 // 1 // 0

  • Column X0 is bias feature/input
  • Column X1 and X2 are the NAND Gate
  • Column Y is the y-true values for the NAND gate
  • yhat is the prediction at that timestep
  • F0,F1,F2,F3 are the Dot products of the Weights (W0,W1,W2) and the input features (X0,X1,X2)
  • Learning rate and activation function threshold are enabled by default as input parameters

  • Uncomment sections for more training iterations/epochs:
  • Loop optimizations would be amazing to have for a selectable length for training iterations/epochs but I'm not sure if it's possible in Pine with how this script is structured.

  • Error metrics and loss have not been implemented due to difficulty with script length and iterations vs epochs - I haven't been able to configure the input parameters to successfully predict the right values for all four y-true values for the NAND gate (only been able to get 3/4; If you're able to get all four predictions to be correct, let me know, please).

// //---- REFERENCE for final output
// A3 := 1, y0 true
// B3 := 1, y1 true
// C3 := 1, y2 true
// D3 := 0, y3 true

PLEASE READ: Source article/template and main code reference:
//v5.6c - activation function error fix (was F > 0.25; corrected 1), line 99
//v5.6d - correction to activation function variable z not being keyed in + W0/W1/W2 not being factored in for initial iterations
// v6.4 - Dot product operation error for F0-F3 and W0-F3 fixed. Test for loop iterator for training.
// v6.5d -
// Loop Iteration for epoch training implemented
// Sum of Squared Error (SSE) implemented
// Y-pred vs Y-true color coded output option function (green/red)
// Custom input options for all arrays, including W0-W2
// Allows for custom of input features, weights, and bias - Default is NAND gate.
// Placeholder "========" for input options seperator for settings panel
// 3x Infopanel component for display output + match color (green/orange/red.)
// v6.6
// Gate detection including XOR/NOR (despite not being able to converge/solve with SLP Neurons - MLP + nonlinear activations required for XOR/NOR training and detection)
// v6.6b
// Missing XOR/XNOR MLP + nonlinear activation warning/message in yellow upon detection - fixed.

TradingViewの精神に則り、このスクリプトの作者は、トレーダーが理解し検証できるようにオープンソースで公開しています。作者に敬意を表します!無料で使用することができますが、このコードを投稿で再利用するには、ハウスルールに準拠する必要があります。 お気に入りに登録してチャート上でご利用頂けます。